2016 Botulinum Toxin Therapy Update: Focus on Limb Dysfunction
Ultrasound Guidance for Chemodenervation and Pain Procedures

Katharine Alter, MD
Senior Clinician, National Institutes of Health, Bethesda MD
Staff Physiatrist, Rehabilitation Programs
Mount Washington Pediatric Hospital
Baltimore, MD
Disclosure

- Dr. Alter has disclosed that she has received Honoraria from Haymarket Medical, Johns Hopkins University, Dannemiller and royalties from Demos Medical Publishing.
Guidance Techniques for Chemodenervation

- Comparison of available guidance techniques for chemodenervation procedures
 - Advantages/disadvantages
- Review of US Physics/technical skills for procedural guidance
- Examples of US guided chemodenervation procedures
 - Nerve blocks
 - Botulinum toxin injections
Chemodenervation Procedures

- Nerve blocks
 - Anesthetic/diagnostic
 - Neurolytic
 - Phenol/alcohol

- Chemodenervation
 - Botulinum toxin (BoNT)
 - Motor point blocks
 - Phenol/alcohol

Invasive Medical/Surgical Procedures

- All invasive procedures involve risk
 - Infection
 - Injury to
 - Nerves/Vessels
 - Organs
 - Muscles
 - Injection of untargeted structures
 - Anesthesia risks
Guidance Techniques for Chemodenervation Procedures

- Accurate targeting is important for
 - Efficacy
 - Minimizing risk
 - Reducing dose of agent/drug
 - Adverse events
- Options
 - Anatomic/palpation
 - EMG, E-Stim
 - Imaging: US, Fluoroscopy

Procedural Guidance Techniques for Invasive Procedures/Injections

Anatomic/Palpation

Advantages:

- No equipment needed
- Reference guides are available
- A few structures may be isolated
 - Easily
 - Quickly
 - Accurately

EMG Guidance for Chemodenervation Procedures

Advantages

- Widely available
- EMG units are relatively inexpensive
- Clinician experience
- EMG:
 - Provide information on muscle activity to guide treatment
 - Auditory feedback of muscle activity

O’Brien CF. Injection techniques for botulinum toxin using electromyography and electrical stimulation. Muscle Nerve, 1997; S6, S176–S180,
E-Stim Guidance for Chemodenervation Procedures

Advantages

- E-Stim provides
 - Provides visual feedback of muscle contraction confirming location in muscle
 - Can be used when:
 - Co-contraction, mass synergy limit usefulness of EMG
 - Patients are sedated
Localization Techniques: Anatomic/EMG/E-Stim Guidance

Disadvantages

- Difficult to palpate or deep/overlapping
 - Muscles
 - Joints
 - Other structures
- Difficult to position patients as recommended in guide books
 - Limits accuracy of this technique for localizing muscles

Localization Techniques for BoNT: Anatomic/EMG/E-Stim

Disadvantages

- Anatomic variations, rearrangements
 - Hypertonia
 - Contracture
 - Deformity
 - Surgery
- Limited patient cooperation
- Impaired selective motor control
- Pain
 - Monopolar injection needles are more painful than hypodermic needles of a similar size

Henzel, Munin et al PMR 2010 Surface vs. US Localization to Identify Forearm Flexor Muscles for BoNT,
Localization Techniques:

EMG

Disadvantages

- Only useful for muscle targets
- Signal may be falsely attributed to target when needle is in another muscle
 - Co contraction, mass synergy
 - Impaired selective motor control

BoNT Induced Dysphagia in Cervical Dystonia: Comparing US and EMG: Hong JS et al 2012
Localization Techniques: E-Stim

E-Stim Disadvantages

- Only useful for nerve/muscle targets
- Difficult to position patients
- May be difficult to isolate target
 - Deep nerves/muscles
 - Overlapping anatomy
- Volume conduction can lead to localization errors
- Pain from stimulation
 - Requires sedation in children

Limitations, Anatomic/EMG/E-Stim: Size and Age of Patient

Difficult to judge depth of muscle
 - Obese patients
 - Pediatric patients
Age related variations and changes in:
 - Muscle size
 - Architecture
 - Shape
Limits estimating muscle orientation, position, and depth

Photos From Heinen F. et al.

12 year old male
5 year old female
11 year old female
29 year old male

FCR Transverse view – Examples/
Limitations Anatomic/EMG/E-Stim: Impairment Level

GMFCS I

GMFCS III

Sonography Diameter Echogenicity

Muscle Size: Inversely related to impairment

Photos from Berweck, Heinen, Schroeder

GMFCS- Gross Motor Functional Classification Scale

Photos From Heinen et al.
Imaging Based Guidance for Chemodenervation Procedures

- Imaging based guidance options
 - MRI
 - CT
 - Fluoroscopy
 - Ultrasound
Disadvantages of MRI, CT, Fluoroscopy

- Limited access
 - Radiology, OR suite
- Cost
- Radiation exposure with CT, Fluoroscopy
- Limited bore size for MRI
 - Special equipment required

Ultrasound for Procedural Guidance

Advantages

- Availability
- Portability
- Cost of equipment
 - Image resolution
 - Similar to MRI (0.1mm)
- Continuous real-time guidance
- No radiation exposure
- Patient acceptance

US for Procedural Guidance: Advantages

Improved Accuracy

- Complex/overlapping anatomy
 - Obscures structure identification
 - Small/large patients, children
- US allows visualization of
 - Target location
 - Target depth
 - Structures to avoid

Forearm muscles
US for Procedural Guidance: Advantages

- Continuously visualize target and needle
 - Quickly
 - Easily
 - Accurately
- May be less painful
 - Smaller needles
- Distracts patients
 - Pediatric patients often require no sedation
US for BoNT Injections: Advantages

- Improved accuracy when localization is limited by:
 - Involuntary muscle activity
 - Co-contraction
 - Motor control, patient cooperation
 - US does not require AROM to isolate muscle
- Muscle identification is based on pattern recognition
US for BoNT Injections: Advantages

- Identify structures to avoid
 - Nerves
 - Vessels
 - Organs
 - Non-targeted muscles
- Which often accompany the target structure
Ultrasound for Botulinum Injections, Advantages: Focal Dystonia

- Isolate Individual muscle fascicles
 - Ex: FDS digit 3 vs. 4
- US increases accuracy and speed of identifying correct muscle fascicles
- Reduces pain/discomfort

Longitudinal Muscle View
Short axis view of needle
High Risk Muscles: SCM

Transverse View, Anterior Neck

Needle Inserted Under EMG Guidance, Checked By US

Needle Inserted into Carotid Artery
US for BoNT Injections: Advantages

- **Visualize injectate**
 - Confirms correct site
 - Provides info on volume of injectate/distension of muscle
 - Reduces risk of over injection at one site
 - Minimizes spread to adjacent muscles or structures

Video from Michael Munin
US for Procedural Guidance: Botulinum (BoNT) Toxin Injections

Advantages

- Non-muscle targets:
 - Salivary Glands

- Correctly isolating gland is critical to reduce the risk of dysphagia

- EMG and E-Stim are of no help

Ultrasound for Chemodenervation: Summary

• Localization techniques
 – Palpation
 – EMG
 – Nerve stimulators
 – Ultrasound
• All have advantages & disadvantages
• Best Strategy:
 – Be skilled in multiple techniques
 – Be aware of
 – The limitations of each technique
 – Evidence supporting/refuting the accuracy of the various techniques

Comparison of Guidance Techniques

<table>
<thead>
<tr>
<th></th>
<th>Palpation</th>
<th>EMG</th>
<th>Stimulation</th>
<th>Sonography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Practicability</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Availability</td>
<td>+/-</td>
<td>+/-</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Pain</td>
<td>+</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Speed</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>++</td>
</tr>
<tr>
<td>Evaluation</td>
<td>+/-</td>
<td>-</td>
<td>+/-</td>
<td>+++</td>
</tr>
<tr>
<td>Future research</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
</tbody>
</table>

Resources

- Munich Ultrasound Course
- www.munichultrasoundcourse.com
- MUC - Munich Ultrasound Course.
- Focus on sono-anatomy | targeting the muscle | children & adults. A.
- Sebastian Schroeder 1*, Steffen Berweck 2*, Urban M.
Ultrasound Basic Physics
US Basics: Sound Wave Pulse Generation

- US waves (λ) are produced by piezoelectric crystals:
 - Thin device that both generates \textit{and} receives sound wave pulses

- How do they do that?
US Pulse Generation and Reception

Piezoelectric Crystals

- Convert electrical pulses into mechanical vibrations
- Convert returning vibrations back into electrical pulses
- Returning echoes are processed to create grey scale 2D/3D/4D images
- A linear array of crystals is used to create planar images

Ultrasound Basics: Transducers

- Transducers determine sound wave frequency
- Frequency determines
 - Depth of sound penetration
 - Resolution
- Transducers come in a variety of sized, shapes

Ultrasound Basics: Transducers

<table>
<thead>
<tr>
<th>MHz</th>
<th>Depth/Penetration</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12-20 cm</td>
<td>OB/GYN</td>
</tr>
<tr>
<td>5</td>
<td>12-15 cm</td>
<td>Deep muscles</td>
</tr>
<tr>
<td>7.5</td>
<td>8-10 cm</td>
<td>Leg</td>
</tr>
<tr>
<td>10</td>
<td>5cm</td>
<td>Forearm</td>
</tr>
<tr>
<td>12-17</td>
<td>3.5- 2cm</td>
<td>Hand, face</td>
</tr>
</tbody>
</table>

Select transducer based on required penetration depth

- **12-17 MHz** for superficial structure
 - Hand, forearm
- **3-5 MHz** for deep muscles
 - Piriformis, iliacus, quadratus lumborum
- **Most transducers have mixed frequencies**
 - 3-5, 7-12 etc
US Basics: Grey Scale Correlates with strength of reflected λ

- **Hyperechoic** = Bright image:
 - When US reflects off strong “mirror like” surfaces
 - Most of the λ are reflected back to transducer = bright signal
 - Lower water content tissues
 - Ex: Fibroadipose, connective tissue, tendon

- **Hypoechoic** = Darker image:
 - Fewer λ reflected back to transducer = high water content tissues
 - Ex: Muscle, cartilage, fluids

Imaging Basics
US Basics: View Convention

- **Top of image** = superficial structures
 - i.e. skin
- **Bottom of image** = deeper structures
- **Longitudinal view:**
 - Hold transducer so
 - Screen Left = proximal
 - Screen Right = distal

US Basics: Transverse View Convention

- Top of image: superficial
 - i.e. skin
- Bottom deeper structures

Transverse view
- Conventions vary
- Simplified System:
 - Screen Left side = medial patient
- Standard Cross Section:
 - Screen Left = Patient right
- Others:
 - Screen left oriented to patient left
Technical Skills
Technical Skills

- Hold the transducer between the thumb, index and 2nd finger
 - Stabilize hand against the patient using 4th/5th fingers or heel of your hand
 - Avoid slipping out of position
US Technical Skills

- Completely scan/image the region of interest prior to procedures
- US beam is narrow
 - Thinner than width of transducer
 - Width of a credit card
 - To fully image a structure, identify target, site for injection SCAN
 - Proximal -distal
 - Medial-lateral
 - Determine best plane for injection

Procedural Skills

In Plane injection
- Needle viewed in long axis
 - Entire needle visualized

Out of plane
- Needle viewed in short axis
 - Hyperechoic dot

Ultrasound Guidance for Nerve Blocks and BoNT Injections

Examples
SCM, Longitudinal, In-plane Injection
US Guided Tibialis Posterior Injection

Tibialis Posterior

- Origin: Posterior interosseous membrane and adjacent tibia and fibula
- Insertion: Tuberosity of navicular and adjacent medial cuneiform
- Innervation: Tibial nerve
- Action: Foot inversion and plantarflexion, medial arch support during gait
Flexor Digitorum Superficialis

(Transverse View)

Origin: Humero-Ulnar Head; Medial epicondyle of humerus and coronoid process
Radial Head: Radius

Insertion: Four tendons: palmar surface of distal phalanges II-V

Innervation: Median nerve

Action: Proximal interphalangeal and metacarpophalangeal joint flexion of fingers II-V, wrist flexion

Injection is performed with forearm in supination

Summary/Conclusions

- US requires learning a new set of skills and the learning curve is steep
- Despite these disadvantages clinicians should consider adding US guidance to their clinical toolbox
 - As an add on technique to traditional methods
 - As a stand alone guidance technique
A variety of guidance techniques are used by for invasive procedures

Clinicians should be aware of the advantages and disadvantages of these techniques

B mode US provides direct visual guidance of the position/depth of the target and real-time information about the needle location

– Evidence supports increased accuracy of US over the other available techniques
Save the Date!

TOXINS 2017

Basic Science and Clinical Aspects of Botulinum and Other Neurotoxins

18-21 January, 2017 • Madrid, Spain

Please Visit www.toxins2017.org for Conference Updates
Thank You