Splinting, Casting, and Occupational Therapy

Remy Chu, Jr. MHA, OTR/L
Occupational Therapy Clinical Manager
Tyler A. Dykes Center for Robotic Rehabilitation Program Manager
Rancho Los Amigos National Rehabilitation Center, County of Los Angeles Department of Health Services
Los Angeles, CA
Disclosures

- Nothing to disclose
Objectives

- Explore the role of physical and occupational therapy in the management of upper extremity (UE) and lower extremity (LE) spasticity in individuals with neurological impairments.
- Review therapy approaches used to manage spasticity and improve function post-botulinum neurotoxin (BoNT) injections.
- Provide a brief overview of relevant research on post-BoNT therapy interventions.
Role of Therapy

“(Therapists) provide intervention to maximize the benefits of BoNT”14

Post BoNT therapy objectives:
- Minimize contractures
 - Stretch spastic (injected) muscle groups
 - Strengthen antagonist muscle groups
- Acquire new motor skills/increase motor control
- Spasticity reduction + increased motor control \Rightarrow increased FUNCTION and occupational performance5
Role of Therapy

- **When:** During the “window of opportunity”
 - Period of clinically beneficial reduction spasticity
 - Lasting 12-16 weeks
- **How much:** Higher frequency, shorter duration
- **Who:** Rehab potential is influenced by the following:
 - Dynamic vs. fixed contracture
 - Degree of voluntary movement / underlying muscular strength
 - Sensory impairment
 - Motivation and ability to participate in therapeutic activities
 - Caregiver support
Stretching 4, 15

- Stretching to increase passive range of motion (PROM) and ultimately to elongate muscles
- Manual stretch: moving through available range of motion with momentary hold at end range
 - At least 20-30 seconds
 - Longer hold better than a quick stretch
 - Repetition
- Prolonged stretch: splinting, casting, positioning
 - Maintain stretch over several hours/days/weeks
 - Neurophysiologic rationale: increases muscle length and number of sarcomeres, inhibits tone by decreasing muscle sensitivity to stretch during movement
 - Biomechanical rationale: increases or preserves length of connective tissue and mobilizes joint
Kinnear et al. (2014)
- BoNT combined with stretch-based interventions more effective at reducing spasticity than BoNT alone
Splinting\(^1\)

- Static splints: immobilize to prevent muscle shortening or contracture
 - Serial static splinting: remolding a static splint to gradually increase PROM
- Static progressive splints: provide constant position and have built in mechanism which is reset to progressively move joint toward end range
- Dynamic splints: moving parts (e.g. elastic or spring) apply constant force and keep joint at end range
Splinting: Summary of the Evidence

- Lai et al. (2009)
 - Greater improvements in AROM and spasticity reduction with use of dynamic elbow splint at night following BoNT
- Kanellopoulos et al. (2009)
 - Combination of static night splint and OT resulted in greater improvements in function after BoNT compared to OT alone
 - Improvements maintained at 6 months
Serial Casting \cite{15,17}

- Cast applied over joint(s) crossed by spastic (i.e. injected) muscles
- Intensity of stretch adjusted by changing joint angle
- Reapplied at established intervals based upon increase in PROM
- Continues until full range achieved or plateau reached
- Some type of positioning device worn during periods of rest once casting complete
Serial Casting: Summary of the Evidence

- Bottos et al. (2003)
 - Greater spasticity reduction and functional gains achieved when casting used after BoNT\(^2\)

- Lannin et al. (2007)
 - Serial casting associated with improvement in quality of UE movement and range of motion\(^{13}\)

- Yasar et al. (2010)
 - Casting associated with statistically significant improvements in PROM and FIM gait scores\(^{20}\)

- Kay et al. (2004)
 - Casting alone appears more effective in reducing FIXED equinus contracture\(^9\)
Therapeutic Exercise and Functional Approaches

- Strengthening to increase AROM and correct muscle imbalance
 - Strengthening program individualized based on abilities and level of function
 - In order to increase strength a muscle must:
 - Contract at maximal capacity
 - Be given multiple repetitions
- Principles of motor learning theory support use of repetition/mass practice and task oriented approach
 - Activities selected given consideration of patient/family goals
 - Graded tasks provide a “just right challenge”
Constraint-Induced Movement Therapy (CIMT) \(^{12}\)

- Scientifically supported method of UE rehabilitation for individuals with hemiplegia
- Involves constraint of non-affected UE in combination with intensive therapy
- Foundations for treatment include neuroplasticity and motor learning theory
- Shaping activities are used in a systematic manner to achieve the following:
 - Facilitate more spontaneous use of affected UE
 - Improve motor skill quality
 - Increase overall function and quality of life
Kinnear et al. (2014) – BoNT combined with CIMT interventions more effective at reducing spasticity than BoNT alone ¹⁰
Other Therapeutic Modalities

- **Therapeutic Taping**
 - Improve alignment (position)
 - Muscle re-education (activating or inhibiting a muscle)
 - Various techniques and brands

- **Neuromuscular Electrical Stimulation (NMES)**
 - Purpose to increase strength of antagonist and increase range of motion or length of agonist \(^{15, 17}\)
 - Pulsating, alternating electrical current applied to muscle via electrodes to create contraction

- **Heat Therapy**
 - Creates short term tissue elasticity \(^{15, 17}\)
 - Caution use in neurological population due to sensory and/or cognitive deficits
Other Therapeutic Modalities: Summary of the Evidence

- Santamato et al. (2015)
 - BoNT in combination with adhesive taping showed a decrease in muscle spasticity and functional impairment\(^\text{16}\)

- Wright et al. (2012)
 - BoNT in combination with NMES associated with increased range of motion, improved strength, and decreased spasticity\(^\text{19}\)

- Wilkenfeld et al. (2013)
 - BoNT in combination with electrical stimulation of muscle group improves the results of the BoNT injections\(^\text{18}\)
In Conclusion…

- What we know \(^3, 6, 10\)
 - BoNT appears to be more effective when combined with therapeutic intervention than when used alone
 - There is high level evidence to support the use of BoNT in combination with physical and/or occupational therapy for best outcomes
 - Therapy approaches are not harmful
 - There is not a clear consensus as to which therapeutic approaches (or combination of approaches) are most beneficial for which circumstances
 - Professional judgment and individual considerations remain a key component of treatment planning
 - More rigorous studies are needed to determine best practice related to post BoNT therapeutic interventions and the long term effects/maintenance of gains
References

Thank You